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Abstract. A discontinuous finite-element method is presented for solving the linear advection-diffusion equation,
based on the Residual-Free Bubble (RFB) finite-element formulation. After the macro-scales (usual piecewise-
polynomials elements) are separated from the micro-scales (the bubble part), they are computed by a standard
Galerkin formulation, while the bubble part is approximated by a discontinuous Galerkin method. The advantage
of this approach, as compared to other implementations of the Residual-Free Bubble formulation, is that the
macro-scales are computed accurately, at least for the model problem presently considered. Numerical tests are
performed to confirm the validity of the proposed approach.

Key words: advection-diffusion, finite-element methods, residual-free bubble

1. Introduction

In this paper, we present a numerical procedure based on the Residual-Free Bubble (RFB)
Finite-Element Method (FEM) for solving the linear advection-diffusion equation. This simple
model problem encompasses one of the main difficulties encountered in the numerical sim-
ulation of fluid flow (e.g., [1] and [2, Chapter 8]). It is well known that classical numerical
methods, such as the central finite-difference method or the standard Galerkin FEM, are
inadequate when the diffusive term is small compared to the advective term. Typically in
our model problem, but also in real fluid-flow simulation, unphysical oscillations pollute the
numerical solution in the whole domain, while the exact solution only shows boundary or
internal layers.

To overcome this difficulty, so-called stabilized methods have been developed. In the frame-
work of the finite-element method, a simple modification consists of injecting a suitable
amount of artificial diffusion. This idea was developed by T.J.R. Hughes and collaborators in
the eighties [3–5]. Their Streamline-Upwind Petrov-Galerkin (SUPG) method adds diffusion
only in the streamline direction, that is, in the direction of the advection field, while pre-
serving the consistency of the variational formulation. The SUPG technique performs better
than the naive artificial diffusion technique, as shown by theoretical analysis and confirmed
by numerical tests reported in [3]. The SUPG method and its variants, such as the Galerkin
Least-Squares method, have become the most popular numerical methods for this kind of
problems.

Despite the success of the SUPG method, there are areas for improvement. For example,
because the method is not monotone, it does not preserve the positivity of the solution, which is
unphysical in some applications. Another weakness is that the amount of streamline diffusion
has to be tuned depending on the problem at hand. For the simple model problem considered
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in this paper, an effective tuning is available (see [3]), while in other cases, for example, in
real-world fluid-flow simulation, tuning of the method can be difficult. This difficulty has
motivated the development of intrinsically stable methods. Examples include the Variational
Multiscale method of Hughes and coworkers (see [6]), and the Residual-Free Bubbles (RFB)
method of Brezzi and Russo (in [7]). These two methods are closely related, as discussed
in [8]. A detailed discussion of the advantages and disadvantages of the methods can be found
in references [6, 9, 10].

In particular, the Residual-Free Bubble (RFB) method is based on a local enrichment of the
finite-element space instead of a modification of the variational formulation. The idea is to add
to the usual space of piecewise polynomials, referred to as macro-scales in this paper, the so-
called bubbles, representing the micro-scales. Bubbles are functions whose support remains
inside the elements of the triangulation. The numerical method turns out to be intrinsically
stable (see, for example, [11] and [12]), at the price of having to solve local problems in
order to approximate, and possibly eliminate, the infinite bubble degrees of freedom. In one
dimension, the local problems can be solved analytically, and the final numerical scheme
produces nodally exact numerical solutions (see [7]). In the multi-dimensional case, one can
approximate analytically the bubble effect only in particular cases; for example, in [7] the case
of linear elements is considered. More general procedures for dealing with the bubble degrees
of freedom have been proposed, as will be discussed in Section 2.

In this paper, we propose to approximate the solution of the local problems for the bubble
degrees of freedom of the Residual-Free Bubble (RFB) formulation by means of a discontinu-
ous Galerkin method. This approach has the advantage of allowing us to compute accurately
the effect of the bubbles on the macro-scales when using linear or higher-order elements in
advection-dominated cases. In Section 2, we present the Residual-Free Bubble (RFB) idea
and discuss the practical implementation, also including the new proposal. In Section 3, we
present numerical tests, and in Section 4 we summarize our conclusions.

2. The RFB formulation and implementation

We consider the linear advection-diffusion equation

Lεu = f in �, (1)

subject to the homogeneous Dirichlet boundary condition, where

Lε := −ε� + c · ∇, (2)

∇ denotes the gradient operator, � denotes the Laplacian operator, i.e.,

� :=
∑

i

∂2

∂x2
i

.

Here ε is a strictly positive diffusivity coefficient, and c is the velocity field in �. The unknown
real-valued function u is defined on the convex polygonal domain � ⊂ R

2. As mentioned in
the introduction, this model problem encompasses some of the difficulties encountered in
the numerical simulation of fluid-flow (see, e.g., [1, Chapter 3]). The variational formulation
underlying (1) can be stated as follows: find u ∈ H 1

0 (�), such that

a (u, v) = 〈f, v〉 , ∀v ∈ H 1
0 (�) ,
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where

a (w, v) := ε

∫
�

∇w · ∇v dx +
∫
�

(c · ∇w) v dx, (3)

and

〈f, v〉 :=
∫
�

f v dx.

We shall assume that f belongs to L2(�), and div(c) ≤ 0. This guarantees that the variational
formulation of (1) is well-posed (see [13, Chapter 1]). Given a subset ω of the domain �

(possibly the whole � itself), we follow the usual notation for the Lebesgue spaces Lp(ω)

(1 ≤ p ≤ ∞) and Sobolev space H 1(ω) of functions whose partial derivatives lie in L2(ω),
and denote by H 1

0 (ω) the subspace of H 1(ω) of all functions vanishing on the boundary ∂ω

(see [13, Chapter 1]). Moreover, we denote by ∂ω−, ∂ω0 and ∂ω+, respectively, the inflow
boundary, the characteristic boundary, and the outflow boundary,

∂ω− := {x ∈ ∂ω such that c · n < 0},
∂ω0 := {x ∈ ∂ω such that c · n = 0},
∂ω+ := {x ∈ ∂ω such that c · n > 0},

where n is the unit outward normal vector.
We shall deal with a family of partitions Th of the domain � into open triangles, satisfying

the usual conditions of admissibility (any two elements have disjoint closure, a vertex in
common, or share a complete edge), and shape regularity (see [14]). The diameter of an
element T will be denoted by hT , and the maximum diameter of all elements in Th will be
denoted by h.

We also assume that c and f are piecewise constant on the triangulation, Th. Consequently,
the assumption div(c) ≤ 0 has to be accepted in the sense of distributions, i.e., c·nT1 +c·nT2 ≤
0 on the common edge ∂T1 ∪ ∂T2 of any two elements T1, T2 of Th, where nTi

denotes the
outward direction on ∂Ti . We shall focus our attention on the advection-dominated regime,
where ε is large compared to hT ‖c|T ‖ in each element T ∈ Th. This is indeed the regime
where standard numerical methods are inadequate (see [1, Chapter 3]).

Consider the usual conforming finite-dimensional space of order k ≥ 1,

VP ≡ VP (Th, k) := {
v ∈ H 1

0 such that v|T ∈ Pk,∀T ∈ Th

}
, (4)

where Pk denotes the space of polynomials of degree k. The Streamline-Upwind Petrov-
Galerkin (SUPG) method can be stated as follow: find uSUPG

P ∈ VP , such that

a
(
uSUPG

P , vP

) +
∑
T ∈Th

τT

∫
T

Lεu
SUPG
P c · ∇vP = 〈f, vP 〉 +

∑
T ∈Th

τT

∫
T

f c · ∇vP ,∀vP ∈ VP , (5)

where τT is the artificial streamline diffusion parameter [3],

τT := hT

2‖c‖ , in T ∈ Th. (6)
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The Residual-Free Bubble (RFB) approach was proposed by Brezzi and Russo [7], inspired
by a different philosophy. Taking the variational formulation of (1) without modification, the
numerical solution is found in the enriched space of functions that are piecewise polynomials
on the boundaries of the elements,

VE ≡ VE (Th, k) := {
v ∈ H 1

0 such that v|∂T ∈ Pk,∀T ∈ Th

}
. (7)

The Residual-Free Bubble (RFB) formulation is stated as follow: find uRFB
E ∈ VE, such that

a
(
uRFB

E , vE

) = 〈f, vE〉 , ∀vE ∈ VE. (8)

An error analysis of the Residual-Free Bubble (RFB) method was presented in references
[12, 15]. Note that the stabilizing mechanism is intrinsically contained in the enrichment of
the space. Contrary to the Streamline-Upwind Petrov-Galerkin (SUPG) formulation, there are
no free parameters. Because of the presence of the bubbles, (8) is an infinite-dimensional vari-
ational formulation, and cannot be coded into a numerical algorithm. To develop an algorithm,
we must approximate (8) with a finite number of degrees of freedom. In this paper, we propose
and justify an original finite-dimensional approximation of (8) based on a non-conforming
(discontinuous) approximation of VE .

We shall denote by L0 := c · ∇(·) the purely hyperbolic operator, which is the formal limit
of Lε when ε → 0; L∗

ε := −ε�(·) − div(c(·)) and L∗
0 := −div(c(·)) denote the adjoint of

Lε and L0, respectively. In particular, if we restrict our attention to the interior of an element
T ∈ Th, where c is assumed to be constant, then L∗

ε := −ε�(·) − c · ∇(·) and L∗
0 := c · ∇(·).

The key idea in developing an algorithm from (8) is the distinction between macro-scales,
which are represented by piecewise polynomials, and micro-scales, or bubbles, which reside
inside the elements. We therefore assume that any vE ∈ VE admits a unique decomposition in

vE = vP + vB, with vP ∈ VP , vB ∈ VB, (9)

where the bubble space is

VB ≡ VB(Th) := {
vB : vB|T ∈ H 1

0 (T ),∀T ∈ Th

}
. (10)

Note that, in order to have a unique splitting (9), namely VE = VP ⊕ VB , we must restrict
the order of polynomials to 1 ≤ k ≤ 2. Indeed, in a triangular element, we can have bubbles
which are polynomials of order 3 or higher; an example is the product of the usual barycentric
coordinates, i.e., of the distances from the edges of the element.

As usual, we split uRFB
E = uRFB

P + uRFB
B , where uRFB

P ∈ VP and uRFB
B ∈ VB , and test (8)

using vP ∈ VP , vB ∈ VB , yielding

a
(
uRFB

P , vP

) + a
(
uRFB

B , vP

) = 〈f, vP 〉, ∀vP ∈ VP , (11)

a
(
uRFB

P , vB

) + a
(
uRFB

B , vB

) = 〈f, vB〉, ∀vB ∈ VB. (12)

Equation (12) gives uRFB
B from uRFB

P and f . In fact uRFB
B solves in each element, T , the

boundary-value problem{
Lεu

RFB
B = f − Lεu

RFB
P in T ,

uRFB
B = 0 on ∂T .
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Substituting uRFB
B in (11), we obtain a closed-form solution for uRFB

P . If M(w) and F(f ) are ,
respectively, the solutions, in each element, T , of the problems{

LεM(w) = −Lεw in T

M(w) = 0 on ∂T ,
(13)

and, {
LεF (f ) = f in T

F(f ) = 0 on ∂T ,
(14)

then the final variational formulation for uRFB
P , after integrating by parts, is

a(uRFB
P , vP )+

∑
T ∈Th

∫
T

M(uRFB
P )L∗

εvP = 〈f, vP 〉 −
∑
T ∈Th

∫
T

F (f )L∗
εvP , ∀vP ∈ VP . (15)

Although this is a finite-dimensional problem, it contains the terms
∫
T

M(uRFB
P )L∗

εvP and∫
T

F (f )L∗
εvP , which implicitly involve the solution of local infinite-dimensional problems.

As proposed in [7], we can use the approximations∑
T ∈Th

∫
T

M(uRFB
P )L∗

εvP ≈
∑
T ∈Th

∫
T

M̃(uRFB
P )L∗

0vP ,

∑
T ∈Th

∫
T

F (f )L∗
εvP ≈

∑
T ∈Th

∫
T

F̃ (f )L∗
0vP ,

(16)

where, in each element T , M̃(w) and F̃ (f ) are given, respectively, by{
L0M̃(w) = −L0w in T

M̃(w) = 0 on ∂T −,
(17)

and {
L0F̃ (f ) = f in T

F̃ (f ) = 0 on ∂T −.
(18)

Roughly speaking, (16) are justified as ε � hT ‖c|T ‖, and so M̃(w) and F̃ (f ) are accurate
approximations of M(w) and F(f ) in L2(T ), for all element T ∈ Th. Indeed, by virtue of
asymptotic expansion techniques of [1, pp. 180–186], one may think of M(w) (resp. F(f ))
as the sum of M̃(w) (resp. F̃ (f )) and a negligible boundary layer. For k = 1, corresponding
to linear elements being used as macro-scales, the solutions of (17) and (18) can be easily
evaluated analytically, as shown in [7]. From (16), we can define an approximated Static
Condensation of the bubble degrees of freedom, and search for uSC

P such that

a(uSC
P , vP ) +

∑
T ∈Th

∫
T

M̃(uSC
P )L∗

0vP = 〈f, vP 〉 −
∑
T ∈Th

∫
T

F̃ (f )L∗
0vP , ∀vP ∈ VP . (19)

Because of (16), we may expect

uSC
P ≈ uRFB

P . (20)
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For k = 1, both (19) and the original scheme (15)) reduce to the Streamline-Upwind
Petrov-Galerkin (SUPG) scheme (5), with a special choice of the streamline diffusion τT . The
choice k = 2 leads to a different scheme; we refer to [7] or [16] for a more detailed analysis.

Instead of computing by hand the effect of the micro-scales on the macro-scales, a different
approach involves using a suitable numerical method for the approximation of the micro-
scales, namely for solving (12). Because (12) gives local problems in each element T with the
same structure and difficulties of the original problem (1), we are led to the use of an ad hoc
method. We shall consider here three typical approaches:
1. The Sub-grid Viscosity (SV) method of Brezzi et al. and Guermond in [17,18], or a similar

two-level method of Franca et al. in [19], which involves using an artificial diffusion or a
Streamline-Upwind Petrov-Galerkin (SUPG) method for (12) on a quasi-uniform sub-grid
mesh T SV

h in each element T .
2. The Pseudo Bubble (PB) method of Brezzi et al. in [20], which involves using a standard

Galerkin scheme for (12) on a suitable distorted mesh T PB
h in each element T .

3. A new method dealing with (17)–(18) instead of (13)–(14), coined the Discontinuous Bubble
(DB) method. In this formulation we solve (17)–(18) by a standard Galerkin method, but
the boundary conditions (on ∂T −) are weakly imposed through the variational formulation.
Specifically, we seek a discontinuous k-order polynomial uDB

D which approximates uRFB
B

on the mesh T DB
h ≡ Th, leading to a non-conforming approximation of VB due to the

discontinuities across the element boundaries.
The different meshes used in these three approaches are shown in Figure 1.

Details of the first two methodologies can be found in the references. A difficulty en-
countered in these approaches is that one has to tune the stabilized method for solving local
problems, for example, by choosing the amount of artificial diffusion in the sub-grid viscosity
case or the shape of the sub-grid mesh in the pseudo residual-free bubble case. The goal is
to accurately compute the RFB approximation, uRFB

E or, at least, the macro-scale degrees of
freedom, uRFB

P . So, in a sense, the original difficulty of tuning a numerical method that depends
on some parameters still remains.

The proposed approach (DG) allows the accurate computation of the macro-scales uRFB
P ,

in the advection-dominated regime. We present now the idea in detail. Define the space of
discontinuous piecewise polynomial functions,

VD ≡ VD (Th, k) := {
v ∈ L2(�) : v|T ∈ Pk,∀T ∈ Th

}
, (21)

and introduce MD(w) ∈ VD and FD(f ) ∈ VD, which are the discretizations of M̃(w) and
F̃ (f ), satisfying∫

T

c · ∇MD(w) vD −
∫

∂T −
MD(w) vD c · n = −

∫
T

c · ∇w vD, ∀vD ∈ VD, (22)

and ∫
T

c · ∇FD(f ) vD −
∫

∂T −
FD(f ) vD c · n =

∫
T

f vD, ∀vD ∈ VD. (23)

Thus, we define uDB
P ∈ VP by

a(uDB
P , vP )+

∑
T ∈Th

∫
T

MD(uDB
P )L∗

0vP = 〈f, vP 〉 −
∑
T ∈Th

∫
T

FD(f )L∗
0vP , ∀vP ∈ VP , (24)
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Figure 1. Meshes involved in the approximation of macro and micro-scales.

and, since the micro-scales are approximated by uDB
D := MD(uDB

P )+FD(f ), we define uDB :=
uDB

P + uDB
D .

Concerning the implementation, we recall that (22) and (23) describe local operators which
can be inverted at the element level. In other words, we can compute the local matrices which
represent MD(·) and FD(·) at the first stage, and then use them in assembling the linear system
for (24).

As mentioned earlier, we want to show that uDB
P , given in (24), is equal to uSC

P , whence
our procedure is accurate in computing the macro-scales uRFB

P , thanks to (20). Indeed, the
formulations (19) and (24) are equivalent, because, for any vP ∈ VP , we have∑

T ∈Th

∫
T

MD(uDB
P )L∗

0vP =
∑
T ∈Th

∫
T

M̃(uDB
P )L∗

0vP

∑
T ∈Th

∫
T

FD(f )L∗
0vP =

∑
T ∈Th

∫
T

F̃ (f )L∗
0vP ,

as a consequence of the following proposition.

Proposition 1. Consider T ∈ Th, k ≥ 1 and φ ∈ Pk−1; let w ∈ H 1(T ) such that{
L0w = φ in T

w = 0 on ∂T −,
(25)
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Figure 2. A triangle has either a single inflow edge, T1, or a single outflow edge, T2.

and let z ∈ Pk be the solution of∫
T

L0z v −
∫

∂T −
z v c · n =

∫
T

φ v, ∀v ∈ Pk. (26)

Then∫
T

w L∗
0v =

∫
T

z L∗
0v, ∀v ∈ Pk. (27)

Proof. The possible orientations of the element T with respect to the advection field c are
shown in Figure 2. We denote by x− ≡ x−(x, c) the inflow point corresponding to x, namely
x− ∈ ∂T − and the vector x− − x is aligned with c. Similarly we define x+ ≡ x+(x, c) as the
outflow point corresponding to x.

Consider the element T1: since we have

w(x) = |c|−1
∫ x

x−
φ d�,

and since ∂T −
1 is a straight line, w ∈ Pk, and w = z, which in particular gives (27).

Consider now the element T2, which has a single edge on the outflow boundary instead. In
this case, w �= z, but given v ∈ Pk the solution ṽ of the dual problem{

L∗
0ṽ = L∗

0v in T

ṽ = 0 on ∂T +,
(28)

which is

ṽ(x) = −|c|−1
∫ x

x+
L∗

0v d�,

belongs to Pk. Using ṽ in (26), invoking (25), and integrating by parts we obtain
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∫
T

z L∗
0ṽ +

∫
∂T +

z ṽ c · n =
∫

T

L0z ṽ +
∫

∂T −
z ṽ c · n

=
∫

T

φ ṽ

=
∫

T

L0w ṽ

=
∫

T

w L∗
0ṽ +

∫
∂T

w ṽ c · n

=
∫

T

w L∗
0ṽ +

∫
∂T +

w ṽ c · n.

Finally (28) gives (27).

3. Numerical tests

In this section, we test the proposed numerical method for a simple model problem. In partic-
ular, we compare results of three approaches:
• The discontinuous approximation uDB, which contains both the macro-scales uDB

P and an
approximation uDB

D of the micro-scales uRFB
B of the RFB formulation,

• The macro-scales uSC
P only; these are still obtained by invoking (24), since uDB

P ≡ uSC
P ≈

uRFB
P , as previously shown.

• The uSUPG
P approximation, given by (5).

For the sake of simplicity we restrict our attention to linear elements (case k = 1), so
that uDB

P ≡ uSC
P and uSUPG

P are both given by the Streamline-Upwind Petrov-Galerkin (SUPG)
variational formulation (5). The only difference is the amount of streamline diffusion τT (see
[7]); for uSUPG

P , we follow the notation of [3], and define

τT := hT

2‖c‖ , in T ∈ Th.

We solve (1) in an L-shaped domain �, where the source term f and the advection field c
are piecewise and discontinuous along the internal line �1, as shown in Figure 3. Furthermore,
we take ε = 10−5.

The structure of the exact solution u is depicted in Figure 4; the behavior is typical of this
class of problems:
• Near the outflow boundary, ∂�+, an exponential layer is present,
• Along the characteristic boundary, ∂�0, a parabolic layer is present,
• Two internal layers are present, one along �1 (due to the discontinuity of f and c), and the

other along �2 (which is due to the re-entrant corner in (1/2, 1/2)).
The domain � is partitioned by quasi-uniform, non-structured, Delaunay triangulation

using the Triangle routine [21]. Each triangle is required to have angles that are larger than
30◦.

As an example, we plot the numerical solutions obtained on one mesh; we give two dif-
ferent points of view on each numerical solution. The first one (from NW to SE) focuses on
the internal discontinuities and structures, while the second (from NE to SW) focuses on the
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Figure 3. Domain and data for the numerical test. Figure 4. Features of the exact solution u for the test
problem.

boundary layers. We plot uSUPG
P in Figure 5(a), uSC

P in Figure 5(b) and uDB in Figure 5(c). In
our tests, the CPU-times required for computing uSUPG

P , uSC
P and uDB, on a given triangulation,

are almost the same.
From the plots of Figure 5(a)–(c) we see that the numerical methods capture the structure of

the exact solution, even though small spurious oscillations appear near the layers. This is not
surprising, because both SUPG and RFB are non-monotone numerical methods. Moreover, it
seems that our complete approximation uDB, which contains the discontinuous approximation
of the bubbles, is no better than uDB

P ≡ uSC
P . On the other hand, in Figure 6 we show the

numerical error in the L2-norm (i.e., ‖u − uSUPG
P ‖L2 , ‖u − uSC

P ‖L2 and ‖u − uDB‖L2), on the
different meshes. It is clear that the presence of spurious oscillations does not affect the order
of the methods — the optimal order of convergence in L2-norm is 1/2, due to the presence
of boundary layers. The discontinuous approximation of the bubbles degrees of freedom uDB

D

actually improves the accuracy when added to the macro-scales uDB
P . Thus, DB is 20% − 25%

better than SC (and SUPG), or, in other words, DB is as accurate as SC on a two-times finer
mesh.

We have evaluated the numerical errors for the previous test-cases in different subregions
of the domain. The results, not reported here, show that the improvement of DB vs. SC is
maximal in exponential boundary layers, where DB gives actually a highly discontinuous
numerical solution, while the two methods are nearly equivalent at the internal layers. This
reveals that the bubble part uRFB

B of the RFB solution, which we approximate through uDB
D ,

produces a proper contribution.



A discontinuous residual-free bubble method 159

Figure 5. Plot of uSUPG (a), uSC
P

(b), and uDB (c) for the model problem.
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Figure 6. Convergence tests based on the L2-norm.

4. Conclusions

In this paper, we have proposed an implementation of the Residual-Free Bubble (RFB) method
for the advection-diffusion linear problem in the advection-dominated regime. The Residual-
Free Bubble (RFB) method is a general methodology for solving partial differential equations.
From an abstract standpoint, it is based on a finite-element formulation on an enriched space,
in which the standard piecewise polynomial functions are enriched by means of bubbles, i.e.,
functions whose support remains inside the elements. The bubbles make the whole formula-
tion intrinsically stable.

For a practical implementation of the Residual-Free Bubble (RFB) formulation, one has
to approximate the infinitely many degrees of freedom of the bubble, in order to suitably
approximate the local problems. We use for that purpose a discontinuous method, which has
the advantage of producing in an accurate way the effect of the bubble on the coarse-scale,
where the coarse-scale are piecewise linear or quadratic polynomials.

We have tested the procedure for linear elements at the coarse-scale level. Other studies
have been devoted to the numerical testing of Residual-Free Bubble (RFB) based procedures,
and we confirm here that the results are favorable in comparison with the popular Streamline-
Upwind Petrov-Galerkin (SUPG) formulation.

Interest in analyzing and developing the Residual-Free Bubble (RFB) methodology, as well
as other multiscale methodologies, stems from the realization that these methodologies are
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quite general whose applicability in other contests has been confirmed in recent investigations
(see, e.g., [10, 16, 22–25]).
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